

Course Syllabus: Advanced Organic Chemistry II - ChemS 340

Division	Physical Science and Engineering Division
Course Number	ChemS 340
Course Title	Advanced Organic Chemistry II
Academic Semester	Spring
Academic Year	2016/2017
Semester Start Date	01/22/2017
Semester End Date	05/18/2017
Class Schedule (Days & Time)	10:30 AM - 12:00 PM Mon Thu

Instructor(s)						
Name	Email	Phone	Office Location	Office Hours		
Nivine Mohammad Khachab	niveen.khashab@kaust.edu.s a	+966128082410		Monday and Thursday 12:00 - 1:00 pm or by appointment		

Teaching Assistant(s)	
Name	Email

Course Information		
Comprehensive Course Description	This course covers reactivities of main organic moieties including enolates, carbenes, radicals, and carbonyl compounds. It also covers mechanisms of named reactions with emphasis on condensation, elimination, rearrangement, and cross coupling reactions. Retrosynthetic analysis will be discussed and practiced with training on proposal writing.	
Course Description from Program Guide	Reactivity and reactions of organic moieties including enolates, carbenes, radicals, carbonyl compounds, and transition metal organometallics; mechanisms of named reactions; multistep total synthesis techniques and reactions; advanced NMR and mass spectrometric techniques as applied to research efforts in organic chemistry and related fields, such as pharmaceuticals, materials science, supramolecular synthesis, and crystal engineering.	
Goals and Objectives	Upon completing this course, students are expected to know: -Functional groups interconversions -Mechanisms of the major chemical reactions -Use of reagants/ calalysts needed for organic transformation -Retrosynthetic analysis techniques for complex organic molecules synthesis such as natural products	
Required Knowledge	Completed ChemS 320 Advanced Organic Chemistry 1	

Reference Texts	Required Text Advanced Organic Chemistry: Structure and Mechanisms (Part B) by Francis A. Carey and Richard J. Sundberg, 5th Edition, Springer
	Reference books and Resources
	March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure by Michael B. Smith and Jerry March , 6th Edition, Wiley
	Comprehensive Organic Name Reactions and Reagents by Zerong Wang, Wiley
	3. Modern Physical Organic Chemistry by Eric V. Anslyn (Author), Dennis A. Dougherty, University
	Science Books (publisher)
	4. Student Solutions Manual To Accompany Modern Physical Organic Chemistry by Michael B. Sponsler,
	University Science Books (publisher)
	5. The Art of Writing Reasonable Organic Reaction Mechanisms by Robert B. Grossman, Springer (2002)
	6. Organic Synthesis: The Disconnection Approach by Stuart Warren, 2nd Edition, Wiley Protective Groups in Organic Chemistry by P. G. M. Wuts and T. W. Greene, 4th Edition, Wiley
Method of evaluation	40.00% - Midterm exam 30.00% - Homework /Assignments 30.00% - Final exam
Nature of the assignments	Organic Synthesis and Mechanisms
Course Policies	Attendance
	Lecture attendance is mandatory and students are responsible for all information, material, and announcements made in class.
	Academic Honesty
	In accordance with university policy and professional standards, the highest levels of academic integrity are expected in this class. The code of student conduct will be strictly enforced. Academic dishonesty will result in reductions in grades and/or expulsion from this class and/or the university.
Additional Information	

Tentative Course Schedule (Time, topic/emphasis & resources)				
Week	Lectures	Торіс		
1	Mon 01/23/2017 Thu 01/26/2017	Enolates		
2	Mon 01/30/2017 Thu 02/02/2017	Enolates		
3	Mon 02/06/2017 Thu 02/09/2017	Oxidation Reactions		
4	Mon 02/13/2017 Thu 02/16/2017	Reduction Reactions		
5	Mon 02/20/2017 Thu 02/23/2017	Functional Groups Interconversions		
6	Mon 02/27/2017 Thu 03/02/2017	Functional Groups Interconversions		
7	Mon 03/06/2017 Thu 03/09/2017	Alkenes& Alkynes		
8	Mon 03/13/2017 Thu 03/16/2017	Ring Construction Reactions		
9	Mon 03/20/2017 Thu 03/23/2017	L'oreal Event-Prof. Khashab is away		
10	Mon 03/27/2017 Thu 03/30/2017	Spring Break		
11	Mon 04/03/2017 Thu 04/06/2017	Spring Break		
12	Mon 04/10/2017 Thu 04/13/2017	Midterm Exam and Corrections		
13	Mon 04/17/2017 Thu 04/20/2017	Class Presentations		
14	Mon 04/24/2017 Thu 04/27/2017	Class Presenations		
15	Mon 05/01/2017 Thu 05/04/2017	Reterosynthetic Analysis		
16	Mon 05/08/2017 Thu 05/11/2017	Reterosynthetic Analysis		
17	Mon 05/15/2017 Thu 05/18/2017	Final Projects Presenation		
18				

Note

The instructor reserves the right to make changes to this syllabus as necessary.