

Course Syllabus: Semiconductor Materials - MSE 322

Division	Physical Science and Engineering Division
Course Number	MSE 322
Course Title	Semiconductor Materials
Academic Semester	Spring
Academic Year	2018/2019
Semester Start Date	01/27/2019
Semester End Date	05/23/2019
Class Schedule (Days & Time)	01:00 PM - 02:30 PM Wed Thu

Instructor(s)				
Name	Email	Phone	Office Location	Office Hours
Iman Salem Roqan	iman.roqan@kaust.edu.sa	+966128084340	R-3221 (sea- side), 3, Ibn Sina (bldg. 3)	Monday 9-11am Tuesday 9-11am Sunday 1-3pm

Teaching Assistant(s)		
Name	Email	

Course Information		
Comprehensive Course Description	This course is advanced semiconductor course that focus on understanding the physical, optical and structural properties of semiconductor materials including semiconductor alloys, amorphous semiconductors, and nanostructure semiconductors. The applications of these semiconductors will be briefly described. In addition, the physics of several growth and characterization techniques will be taught for the students. The class will involve practical lab work. In the end of this course the student should have a good understanding on the semiconductor properties and most important growth and characterization techniques.	
Course Description from Program Guide	The course covers the physico-chemical and electronic properties of advanced semiconductor materials other than Si and GaAs. The materials that will be covered include elemental semiconductors such as Ge and carbon (in the form of carbon nanotubes and graphene), compound semiconductors such as III-V and II-VI compounds, and wide-band gap semiconductors such as carbides and nitrides. Special classes of semiconductors such as oxides, chalcogenides, and polymeric semiconductors will be included. In each material category, the material processing and fabrication of select devices will be discussed including 1-dimensional and 2-dimensional devices. Measurement protocols for the devices will be presented.	
Goals and Objectives	At the end of this course students will be able -Understand the Engineering of the electronic band structure and crystal structure of semiconductor materialsInterpret the semiconductor alloys and bandgap bowingUnderstand amorphous semiconductor band structure and electrical behaviorExplain optical properties of semiconductorBe familiar with the optical and structural characterization techniques and the related lab work	
Required Knowledge	Students should be familiar with the contents of, Electronic properties of materials or equivalent Quantum mechanics Thermodynamics	

Reference Texts	The textbooks
	-The Materials Science of Semiconductors by Angus Rockett
	-The Physics of Semiconductors: An Introduction Including Nanophysics and Applications by Marius
	Grundmann
	-Optical properties of Solid by Mark Fox
	-Semiconductor material and device characterization by Dieter K. Schroder Addition reference books
	-Electronics structures and the properties of Solids: physics of chemical bonds by Harrison.
	-Electrical properties of materials by Solymar
	-Advance semiconductor fundamentals by Pierret
	-Introduction to solid state physics by Kittel
Method of evaluation	50.00 % - Final exam
Nature of the assignments	-Exams -literature review -presentations -Homeworks
Course Policies	Students should attend all sessions (frequent absence will be penalized in up to 5% of final grade). Additional class may took place for tutorials after each chapter
Additional Information	As it is an advance topic, students who did not have the background knowledge on quantum mechanics and thermodynamics will be not able to follow the classes without these knowledge that may affect their performance in the class

Tentative Course Schedule (Time, topic/emphasis & resources)			
Week	Lectures	Торіс	
1	Wed 01/30/2019	Band Theory (Solution of the Schrodinger Equation)	
1	Thu 01/31/2019	Band Theory (Solution of the Schrodinger Equation)	
2	Wed 02/06/2019	Engineering of the band structure of different types of semiconductors	
2	Thu 02/07/2019	Engineering of the band structure of different types of semiconductors	
3	Wed 02/13/2019	Engineering of the band structure of different types of semiconductors	
3	Thu 02/14/2019	Tutorials	
4	Wed 02/20/2019	Engineering of Semiconductor alloys including metastable materials and applications	
4	Thu 02/21/2019	Engineering of Semiconductor alloys including metastable materials and applications	
5	Wed 02/27/2019	Tutorials	
5	Thu 02/28/2019	Band structure of amorphous semiconductor	
6	Wed 03/06/2019	The electronic properties of amorphous semiconductor	
6	Thu 03/07/2019	The optical and electrical properties of amorphous semiconductor	
7	Wed 03/13/2019	Tutorials	
7	Thu 03/14/2019	Crystal Growth and Epitaxy	
8	Wed 03/20/2019	Tutorials +Revision	
8	Thu 03/21/2019	Mid term exam	
9	Wed 03/27/2019	Spring Break	
9	Thu 03/28/2019	Optical properties of Semiconductor and excitonic behavior	
10	Wed 04/03/2019	Optical properties of Semiconductor and excitonic behavior	
10	Thu 04/04/2019	Tutorials	
11	Wed 04/10/2019	The physics of nanostructures semiconductor	
11	Thu 04/11/2019	The physics of nanostructures semiconductor	
12	Wed 04/17/2019	Optical, electrical and structural characterization techniques	
12	Thu 04/18/2019	Optical, electrical and structural characterization techniques	
13	Wed 04/24/2019	Tutorials	
13	Thu 04/25/2019	Optical, electrical and structural characterization techniques	
14	Wed 05/01/2019	Optical, electrical and structural characterization techniques	
14	Thu 05/02/2019	Tutrorial and discussions	
15	Wed 05/08/2019	Student presentations	
15	Thu 05/09/2019	Revisions	
16	Wed 05/15/2019	Revisions	
16	Thu 05/16/2019	The final in the Exam week	
17	Wed 05/22/2019	Final Exam Week	
17	Thu 05/23/2019	Final Exam Week	

Note

The instructor reserves the right to make changes to this syllabus as necessary.